direct_coexistence_method_util
Short description
@author: Moritz F P Becker
- pyrid.evaluation.direct_coexistence_method_util.calc_phase_diagram(Histograms, cutoff)[source]
Calculates the phase diagram from a given density profile by identifying the dense and the dilute phase.
- Parameters
- Histogramfloat64[:]
Density profile.
- cutofffloat64
Fraction of the maximum density at which to distinguish between dilute and dense phase.
- Returns
- tuple(float64, float64)
Volume fractions of the dense and the dilute phase.
- pyrid.evaluation.direct_coexistence_method_util.calc_profile(path, moltype, box_lengths, axes, cells_axes, section)[source]
Calculates the density profile of a molecule population along a given coordinate axis.
- Parameters
- pathstring
directory of the hdf5 file.
- moltypestring
Molecule type
- box_lengthsfloat64[3]
Simulation box lengths
- axes0, 1 or 2
Coordinate axis along which to calculate the density profile.
- cells_axesint64
Number of cells / bins by which to divide the simulation box along the chosen axis.
- sectionint64[2]
Time interval (section) over which the density profile is averaged.
- Returns
- float64[:]
Density profile / histogram
- pyrid.evaluation.direct_coexistence_method_util.center_profile(Histograms0, box_lengths, axes, cells_axes)[source]
Centers the molecule density profile.
- Parameters
- Histogram0float64[:]
Density profile.
- box_lengthsfloat64[3]
Simulation box lengths
- axes0, 1 or 2
Coordinate axis corresponding to the density profile (axis along which the profile has been sampled).
- cells_axesint64
Number of cells / bins along the chosen axis.
- Returns
- float64
Value by which to shift the density profile such that it is centered.
- pyrid.evaluation.direct_coexistence_method_util.critical_Density(eps_csw, s2, phi_c)[source]
Equation to estimate the critical density / volume fraction. critical_Density() is called by critical_point_fit() for fitting. Based on: Silmore 2017, “Vapour–liquid phase equilibrium and surface tension of fully flexible Lennard–Jones chains”
- Parameters
- eps_cswfloat64
Interaction energy constant
- s2float64
fitting parameter
- phi_cfloat64
Volume fraction of the condensed (dense) phase.
- Returns
- float64
Critical density.
- pyrid.evaluation.direct_coexistence_method_util.critical_Temp(eps_csw, d, eps_c, x)[source]
Equation to estimate the critical temperature (inverse interaction strength). critical_Temp() is called by critical_point_fit() for fitting. Based on: Silmore 2017, “Vapour–liquid phase equilibrium and surface tension of fully flexible Lennard–Jones chains”
- Parameters
- eps_cswfloat64
Interaction energy constant
- dfloat64
fitting parameter
- eps_cfloat64
Critical interaction energy constant of the highest-valency molecule (interaction energy at the critical point where the two phase regime ends).
- Returns
- float64
Critical temperature (inverse interaction strength)
- pyrid.evaluation.direct_coexistence_method_util.critical_point_fit(pp_strength, dense, dilute)[source]
Estimates the critical temperature (inverse interaction strength) and density / volume fraction from a selection of phase diagram points.
- Parameters
- pp_strengthfloat64[:]
List of particle-particle interaction strengths.
- densefloat64[:]
Volume fractions of the dense phase (condensate) corresponding to particle-particle interaction strengths kept in pp_strength.
- dilutefloat64[:]
Volume fractions of the dilute phase corresponding to particle-particle interaction strengths kept in pp_strength.
- Returns
- tuple(float64, float64)
Estimates for the critical temperature (inverse interaction strength) and the critical density (volume fraction).
- pyrid.evaluation.direct_coexistence_method_util.density_hyperbolic_tangent(z, z0, d, dense, dilute)[source]
The hyperbolic tangent function can be used to fit the density profile.
- Parameters
- zfloat64[:]
Location / Distance values along z-axis.
- z0float64
Location shift.
- dfloat64
fitting parameter
- dense: `float64`
Volume fraction dense phase.
- dilutefloat64
Volume fraction dilute phase.
- Returns
- float64[:]
Fit of the density profile.